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Coherent transport on Apollonian networks and continuous-time quantum walks
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We study the coherent exciton transport on Apollonian networks generated by simple iterative rules. The
coherent exciton dynamics is modeled by continuous-time quantum walks and we calculate the transition
probabilities between two nodes of the networks. We find that the transport depends on the initial nodes of the
excitation. For networks up to the second generation the coherent transport shows perfect recurrences when the
initial excitation starts at the central node. For networks of higher generation, the transport only shows partial
revivals. Moreover, we find that the excitation is most likely to be found at the initial nodes while the coherent
transport to other nodes has a very low probability. In the long time limit, the transition probabilities show
characteristic patterns with identical values of limiting probabilities. Finally, the dynamics of quantum trans-
port are compared with the classical transport modeled by continuous-time random walks.
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The problem of coherent exciton transport modeled by
quantum walks is widely studied and relevant to many dis-
tinct fields, such as polymer physics, solid state physics, bio-
logical physics, and quantum computation [1-3]. Such stud-
ies have been done in the framework of continuous-time
quantum walks (CTQWSs) and on various discrete systems
[4,5]. It has been shown that the dynamics of coherent trans-
port are strongly influenced by the structure of the underly-
ing discrete systems [6-8]. Most of the previous studies fo-
cus CTQWs on graphs with simple structures [9-11];
coherent dynamics on general graphs have not received
much attention in the scientific community. To this end, it is
natural to consider quantum transport on graphs with general
structure embedded in nature.

An important and universal feature of networked systems
(or graphs) in nature is that they have the small-world and
scale-free property [12,13]. The Apollonian networks (ANs)
[14,15] are a very useful toy model that captures all these
features simultaneously, thus provide a good facility to study
the dynamical processes taking place on networked systems,
including percolation, electrical conduction, etc. [14,16,17].

In this paper, we consider coherent exciton transport on
two-dimensional (2D) Apollonian networks (ANs). The net-
work can be generated as follows [14]: At the initial genera-
tion g=0, the network is composed of three fully connected
nodes marked as 1, 2, and 3. At the subsequent generation, a
new node is added inside each (newly established) triangle
and linked to the three vertices of the triangle. Using this
simple rule, we can obtain a deterministic 2D AN of size
N=3+(3~1)/2 (G is the number of generations) [14].
Many topological properties of this network model have
been well studied in the literature [15,18]. Figure 1 shows
the structure of an AN in four generations (G=4).

The coherent exciton transport on a connected network is
modeled by the continuous-time quantum walks (CTQWs),
which is obtained by replacing the Hamiltonian of the system
by the classical transfer matrix, i.e., H==T [19,20]. The
transfer matrix 7 relates to the Laplace matrix by T=—A. The
Laplace matrix A has nondiagonal elements A;; equal to —1 if
nodes i and j are connected and O otherwise. The diagonal
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elements A;; equal to degree of node i, i.e., A;;=k;. The states
|7 endowed with the node j of the network form a complete,
orthonormalized basis set, which span the whole accessible
Hilbert space. The time evolution of a state |j) starting at
time 1, is given by |j,0)=U(t,t)|j), where Ul(t,ty)
=exp[—-iH(t—1,)] is the quantum mechanical time evolution
operator. The transition amplitude a; ;(r) from state |j) at
time 0 to state |k) at time 7 reads as a ;(r)=(k|U(¢,0)|;) and
obeys Schrddinger’s equation [21]. Then the classical and
quantum transition probabilities to go from the state |j) at
time 0 to the state |k) at time ¢ are given by py (1)
=(Kle]j) and ()= [a ()P =[(kle ] [19], respee-
tively. Using E, and |g,,) to represent the nth eigenvalue and
orthonormalized eigenvector of H, the classical and quantum
transition probabilities between two nodes can be written as
[19-21]
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FIG. 1. Apollonian network generated by simple iterative rules
in four generations (G=4). The nodes at each generation g are
marked as consecutive numbers.
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FIG. 2. (Color online) Time evolution of transition probabilities
. 4(2) for different values of k (marked as different types of curves)
on ANs of G=3 (a) and G=4 (b). The excitation starts at central
node 4. The insets are enlarged linear-scale plots of return probabil-
ity ’774’4([).

Pi(t) = 2 e Bkl g, X, (1)

7 (0 = a0 = |2 ekl Xald|*. (@)

Generally, to obtain p, ;(t) and (1), all the eigenvalues E,
and eigenvectors |g,) are required. In the following we will
consider py ;(t) and () obtained from diagonalizing the
Hamiltonian H by using the standard software package
MATHEMATICA 5.0.

We start our analysis by considering transport dynamics
on ANs of G=3 (N=16) and G=4 (N=43) when the excita-
tion starts at the central node 4. The nodes are numbered
according to Fig. 1 and network of G=3 (nodes labeled as
1~16) is a subgraph of G=4 (nodes labeled as 1-43). Due
to rotational symmetry, the transition probabilities from node
4 to certain groups of nodes are equal. Thus, we choose
several different transition probabilities, namely, 4(1),
1 4(1), 15.4(1), T 4(1), and 1714 4(1) for further study.

Figure 2 shows these quantum transition probabilities for
ANSs of G=3 and G=4. We find that there is a high probabil-
ity to find the excitation at the initial node [, 4(f) marked as
solid curves in Fig. 2]. To see the behavior of 7, 4(7) clearly,
we display 4 4(r) in an enlarged linear scale (see inserted
plots in Fig. 2). For AN of G=3, m4(¢) shows regular os-
cillations; as generation increases, 774’4(t) becomes irregular
and its average value increases [compare the inserted plots in
Figs. 2(a) and 2(b)]. Transition probabilities between the ini-
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FIG. 3. (Color online) Time evolution of the classical probabili-
ties py 4(7) for different values of k (marked as different types of
curves) on ANs of G=3 (a) and G=4 (b). The excitation starts at
central node 4. The classical p; 4(r) approach the equipartitioned
probability 1/N at a long time scale.

tial node and other nodes are considerably low compared to
the return probability 7, 4(7) [see the dashed curves in Figs.
2(a) and 2(b)].

Figure 3 shows the classical transition probabilities p; 4(7)
for different values of k. It is found that the classical transi-
tion probabilities approach the equipartition 1/N very
quickly and p44(7) reaches 1/N much slower than other
transition probabilities. This can be explained by the shortest
path length from the initial excitation node 4. The number of
bonds between node 4 and 14 is larger than the distance
between other pairs of nodes. In addition, because the short-
est path lengths between 4 and 1, 4 and 5, and 4 and 8 are
equal, the classical p; 4(1), ps4(7), and pg 4(1) are comparable
(see the curves in Fig. 3). Noting that the long time averaged
144(1) is much higher than equipartitioned probability 1/N,
we conclude that the classical transport is more efficient than
the quantum transport.

Interestingly, for G=1 (N=4) and G=2 (N=7) ANs, the
quantum transition probabilities are fully periodic when the
coherent excitation starts from the central node 4. In this case
we obtain that, based on the analytically determined eigen-
values and eigenvectors [22], for G=1, m (¢) have the fol-
lowing periodic form:

(5+3cos4t)/8, k=j,
m (1) =

(1-cos4r)/8, k+j. )
For G=2 we have,
(37+ 12 cos 7t)/49, k=4,
ealt) = {(2 —2cosT1)/49,  k# 4. “

Figure 4 shows the behavior of m ;(r) obtained by numeri-
cally diagonalizing the Hamiltonian H for G=1 and G=2
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FIG. 4. (Color online) (a) Transition probabilities m ;(r) for AN
of G=1. (b) Transition probabilities m; 4() for AN of G=2. Both
results are numerically obtained by diagonalizing the Hamiltonian
H and consistent with the analytical results in Egs. (3) and (4).

ANSs. This agrees with the analytical results in Egs. (3) and
(4). We find that there is a perfect revival of the initial state
for each t=2n7/N (n € integers). This revival of the initial
probability distribution resembles the results obtained for
continuous and discrete quantum carpets [7,23], in which the
revival is only perfect for a small size of cycles [24]. The
case for ANs is analogous: The revivals are perfect for small
ANs of G=<2, when the network size becomes larger (G
= 3); there are only partial revivals of the initial state (com-
pare Fig. 2 and Fig. 4).

Now we turn to the case when the initial excitation starts
at other positions. Figure 5 shows the transition probabilities
when the initial excitation is placed at node 1. For both the
G=3 and G=4 AN, the return probabilities 7y ;(¢) display
regular oscillations. The return probability 7 (¢) is much
larger than other transition probabilities  ;(r) (k#1) at
most time intervals. It is interesting to note that except for
the high return probability | ;(7), there is also considerable
transport to nodes 2 and 3 [note 7, ;(r)=1r3 (1) because of
axis symmetry]. Nevertheless, transport to other nodes (such
as 4, 5, etc.) is particularly low. This suggests that the exci-
tation is preferably located on the nodes of the same genera-
tion of the initial node.

If the initial excitation starts from other noncentral nodes,
the results are similar but some details change. The oscilla-
tion amplitude and period are different and there is also a
relative high probability to find the excitation at the initial
node.

In order to discuss what happens at long times, we con-
sider the long time averages of the transition probabilities
p;(t) and ; (7). On finite ANs, the transition probability
converges to a certain value; this value is determined by the
long time average. Classically, the long time averaged tran-
sition probabilities are equal to the equal-partitioned prob-
ability 1/N. However, the quantum transport does not lead to
equipartition. The long time average of ; () is defined as
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FIG. 5. (Color online) Time evolution of transition probabilities

a1 (2) for different values of k (marked as different types of curves)

on ANs of G=3 (a) and G=4 (b). The excitation starts at noncentral

node 1. The return probability 7y ;(¢) is nearly periodic for both of

the networks.

1 T
Xk,j= llm }J Wk,](t)dt

T—o 0

n,l

where 8(E,—E;)=1 for E,=E; and &(E,—E;)=0 else. Some
eigenvalues of H may be degenerate, so the sum in the equa-
tion contain terms belonging to different eigenstates. Here,
we consider the limiting transition probabilities y; ; accord-
ing to this equation.

Figures 6(a) and 6(b) show the limiting probability distri-
butions for G=3 and G=4 ANs. In the figure, we find that
X;;j is larger than other transition probabilities x; ; (k# j).
This indicates the excitation is most likely to be found at the
initial node, which is in accord with the observation in Figs.
2 and 5.

An interesting feature related to the limiting probabilities
is that different nodes, k and /, may have the same transition
probabilities, i.e., x,;=x;; Concretely, for an excitation
starting from the central node j=4, transport to nodes of a
certain cluster has identical limiting transition probabilities
(see the black squares in Fig. 6). For instance, x; 4, X2.4, and
X34 are equal to each other; Xs54=Xe4=X7.45 Xia are equal
for 8<k=13; .... The nodes of clusters having the same
transition probabilities in such a case are easy to be identified
due to rotation-symmetry of the central node.

For an excitation starting from the noncentral node, the
situation is quite different. When the excitation starts at node
1 (see the dots in Fig. 6), x, ; is equal to x; ;. Such identical
values of transition probabilities are also easy to be distin-
guished and can be understood as a result of the axis sym-
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FIG. 6. (Color online) Long time limiting probabilities y; ; for
different node j of initial excitation on the G=3 (a) and G=4 (b)
ANs. The squares, dots, triangles, and rhombus denote initial exci-
tation at nodes 4, 1, 5, and 8, respectively.

metry. The case for excitation starting at node 5 is analogous
(see the triangles in the plots). Particularly, if the excitation
starts at node 8, nodes 10 and 12 have the same limiting
probability, i.e., xj08=X128 (pentacles indicated in Fig. 6).
Such kind of identical probability is not straightforward to be
realized but also can be ascribed to the rotation symmetry of
the structure of ANs. Except for the equal value of x;og and
X12.8 on both the G=3 and G=4 ANs, we find that there are
more identical probabilities on the G=4 AN. For instance,
we find the following equal transition probabilities: x3; g
=X33,8  X19,17=X21,17>  X26,23= X28,23>  X10,29= X12,29>  X31,29
=X33.29 X37.35=X39.35» €tc. For ANs of higher generation, the
previous identical limiting probabilities are preserved and
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additional identical values of transition probabilities are ob-
served due to structural symmetry of the network.

In summary, we have studied coherent exciton transport
modeled by continuous-time quantum walks on ANs. The
quantum transport exhibits a very distinct behavior compared
to the classical random walks. For networks up to the second
generation the coherent transport shows perfect recurrences
when the initial excitation starts at the central node [7]. For
networks of higher generation, the transport only shows par-
tial revivals. The excitation depends on the initial nodes and
is most likely to be found at the original nodes while the
coherent transport to other nodes is particularly low. In the
long time limit, the transition probabilities show identical
values between different nodes, which reflects the symmetry
of the network structure.

We would like to point out that although CTQWSs on ANs
show oscillation and revivals like the results of the one-
dimensional (1D) case, there are some differences in the
quantum dynamics between the two structures. For ANs, we
find that the return probabilities at the central nodes are
nearly periodic, in contrast to the 1D case where the (maxi-
mums of) return probability shows a power-law decay as
()~ [21,25]. In Ref. [25], the authors find that for a 1D
chain, there are quantum revivals and Anderson localizations
in the presence of static or dynamic disorder [25]. For AN,
there are also considerable localizations on the initial nodes
(see Fig. 6). Such localizations may relate to the network
structures and require a further study.
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